Full Surplus Extraction from Colluding Bidders

Daniil Larionov

University of Münster

August 25, 2024

Introduction

- Can Seller effectively fight collusion among Buyers?
- Infinitely repeated first-price auctions.
 - Seller sets dynamic reserve prices without long-term commitment.
 - Buyers are patient.
 - Buyers are privately informed about their willingness-to-pay.

Introduction

- Can Seller effectively fight collusion among Buyers?
- Infinitely repeated first-price auctions.
 - Seller sets dynamic reserve prices without long-term commitment.
 - Buyers are patient.
 - Buyers are privately informed about their willingness-to-pay.
- Yes, Seller can get as much revenue as without collusion!

Collusion

- Collusion := tacit collusion.
 - Bid suppression achieved without communication/transfers.

Collusion

- Collusion := tacit collusion.
 - Bid suppression achieved without communication/transfers.
- Why can Buyers collude?
 - Buyers use threat of competition tomorrow to enforce collusion today.
 - Public disclosure of bids facilitates collusion.

Collusion

- Collusion := tacit collusion.
 - Bid suppression achieved without communication/transfers.

• Why can Buyers collude?

- Buyers use threat of competition tomorrow to enforce collusion today.
- Public disclosure of bids facilitates collusion.

• Why is collusion hard to fight?

 Seller faces uncertainty both about Buyers' willingness-to-pay and the details of Buyers' collusive scheme ⇒ collusion is hard to detect.

What do I do?

- Introduce collusive equilibria.
 - Equilibrium is collusive if, given Seller's equilibrium strategy, Buyers play the best equilibrium in the corresponding reduced game among themselves.

What do I do?

- Introduce collusive equilibria.
 - Equilibrium is collusive if, given Seller's equilibrium strategy, Buyers play the best equilibrium in the corresponding reduced game among themselves.
- Construct a collusive equilibrium that allows Seller to extract (almost) full surplus from patient Buyers.
 - ⇒ There is an effective strategy for fighting collusion.
 - Even with limited instruments (reserve prices only).
 - Even though Seller has to publicly disclose bids.

What do I do?

- Introduce collusive equilibria.
 - Equilibrium is collusive if, given Seller's equilibrium strategy, Buyers play the best equilibrium in the corresponding reduced game among themselves.
- Construct a collusive equilibrium that allows Seller to extract (almost) full surplus from patient Buyers.
 - ⇒ There is an effective strategy for fighting collusion.
 - Even with limited instruments (reserve prices only).
 - Even though Seller has to publicly disclose bids.
- Full surplus extraction is not implied by existing folk theorems!

Model: setup

Seller (player 0) and $n \ge 2$ Buyers, interact over $T = \infty$ periods.

- Seller offers one unit of a good in every period.
- Seller's valuation is 0.
- Seller's discount factor is δ_0 .
- Buyers demand a new unit in every period.
- Buyers' valuations: binary $(\bar{\theta} > \underline{\theta})$; iid across time and Buyers.
 - $\mathbb{P}[\underline{\theta}] = q$.
 - Buyers are privately informed about their valuations.
- Buyers' common discount factor is $\delta \geq \delta_0$.

Model: timing

In every period:

- lacktriangle Seller announces reserve price r.
- 2 Buyers privately learn their valuations.
- **3** Buyers bid/abstain in the first-price auction with reserve price r.
- Bids and/or abstentions are publicly disclosed.

Roadmap

- Collusive public perfect equilibrium
- Pull surplus extraction

Concluding remarks

Collusive public perfect equilibrium: motivation

• One-shot equilibrium (q is high, i.e. many low types).

$$r_{os}^* = \underline{\theta}, \quad \underline{b}_{os}^* = \underline{\theta}, \quad \overline{b}_{os}^* \text{ mixed on } (\underline{\theta}, \cdot]$$

Collusive public perfect equilibrium: motivation

• One-shot equilibrium (q is high, i.e. many low types).

$$r_{os}^* = \underline{\theta}, \quad \underline{b}_{os}^* = \underline{\theta}, \quad \overline{b}_{os}^* \text{ mixed on } (\underline{\theta}, \cdot]$$

- Repetition of the one-shot equilibrium is "non-collusive".
 - Buyers can collude by playing $b = \emptyset$, $\overline{b} = \theta$.
 - ullet Outcome can be supported by a grim-trigger strategy for high δ 's.

Collusive public perfect equilibrium: motivation

• One-shot equilibrium (q is high, i.e. many low types).

$$r_{os}^* = \underline{\theta}, \quad \underline{b}_{os}^* = \underline{\theta}, \quad \overline{b}_{os}^* \text{ mixed on } (\underline{\theta}, \cdot]$$

- Repetition of the one-shot equilibrium is "non-collusive".
 - Buyers can collude by playing $b = \emptyset$, $\overline{b} = \theta$.
 - ullet Outcome can be supported by a grim-trigger strategy for high δ 's.
- Rule out this and other non-collusive equilibria.

Collusive public perfect equilibrium: definition

- Strongly symmetric public perfect equilibrium (SSPPE).
 - PPE ≈ Analog of SPE in games with imperfect public monitoring.
 - Strongly symmetric = symmetric on and off equilibrium path.

SSPPE formal

Collusive public perfect equilibrium: definition

- Strongly symmetric public perfect equilibrium (SSPPE).
 - ullet PPE pprox Analog of SPE in games with imperfect public monitoring.
 - Strongly symmetric = symmetric on and off equilibrium path.

SSPPE formal

- @ Given Seller's equilibrium strategy, Buyers collude.
 - Seller's strategy induces a buyer-game.
 - Buyer-game is a stochastic game between Buyers in which reserve prices are set according to Seller's strategy.
 - Buyers cannot gain by choosing another strongly symmetric public perfect equilibrium in the induced buyer-game.

Collusive formal

Full surplus extraction

Construct a collusive public perfect equilibrium, in which Seller extracts full surplus as $\delta \to 1$.

Full surplus extraction

Construct a collusive public perfect equilibrium, in which Seller extracts full surplus as $\delta \to 1$.

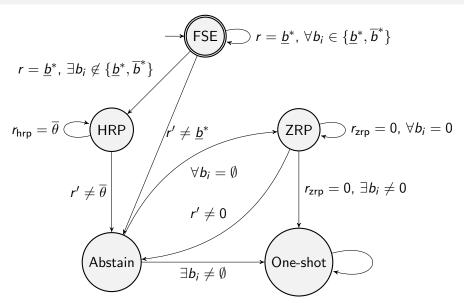
- 3 (on path) \times 2 (off path) = 6 cases depending on parameter values.
 - On-path: stationary and separating $(\overline{b}^* > \underline{b}^*)$ in all 3 cases.
 - Off-path: (i) **pooling** and (ii) separating.

Full surplus extraction

Construct a collusive public perfect equilibrium, in which Seller extracts full surplus as $\delta \to 1$.

- 3 (on path) \times 2 (off path) = 6 cases depending on parameter values.
 - On-path: stationary and separating $(\overline{b}^* > \underline{b}^*)$ in all 3 cases.
 - Off-path: (i) **pooling** and (ii) separating.
- Off-path collusive public perfect equilibria (pooling case):
 - ZRP: zero-revenue pooling (pool at $\underline{b} = 0$) (to punish Seller).
 - HRP: high-reserve-price $(r = \overline{\theta}, v = 0)$ (to punish Buyers).

Full Surplus Extraction (FSE) equilibrium, illustration



(LowIC)
$$\underbrace{(1-\delta)\frac{q^{n-1}}{n}(\underline{\theta}-\underline{b}^*)+\delta v_{\mathsf{fse}}^* \geq 0}_{\mathsf{Low type \ deviates \ to}},$$

$$(\text{LowIC}) \quad \underbrace{(1-\delta)\frac{q^{n-1}}{n}(\underline{\theta}-\underline{b}^*) + \delta v_{\mathsf{fse}}^* \geq 0,}_{\mathsf{Low type eq.} \, \geq \, \mathsf{Low type deviates to} \, \emptyset}$$

$$(\mathsf{HighIC\text{-up}}) \quad \underbrace{(1-\delta)\frac{1-q^n}{n(1-q)}(\overline{\theta}-\overline{b}^*) + \delta v_{\mathsf{fse}}^* \geq (1-\delta)(\overline{\theta}-\overline{b}^*),}_{\mathsf{High type eq.} \, \geq \, \mathsf{High type deviates to} \, \overline{b}^* + \epsilon}$$

$$(\text{LowIC}) \underbrace{(1-\delta)\frac{q^{n-1}}{n}(\underline{\theta}-\underline{b}^*)+\delta v_{\text{fse}}^* \geq 0,}_{\text{Low type eq. } \geq \text{Low type deviates to } \emptyset}$$

$$(\text{HighIC-up}) \underbrace{(1-\delta)\frac{1-q^n}{n(1-q)}(\overline{\theta}-\overline{b}^*)+\delta v_{\text{fse}}^* \geq (1-\delta)(\overline{\theta}-\overline{b}^*),}_{\text{High type eq. } \geq \text{High type deviates to } \overline{b}^*+\epsilon}$$

$$(\text{HighIC-down}) \underbrace{(1-\delta)\frac{1-q^n}{n(1-q)}(\overline{\theta}-\overline{b}^*)+\delta v_{\text{fse}}^* \geq (1-\delta)q^{n-1}(\overline{\theta}-\underline{b}^*),}_{\text{High type eq. } \geq \text{High type deviates to } b^*+\epsilon}$$

(LowIC)
$$\underbrace{(1-\delta)\frac{q^{n-1}}{n}(\underline{\theta}-\underline{b}^*)+\delta v_{\mathsf{fse}}^* \geq 0}_{\mathsf{Low}\;\mathsf{type}\;\mathsf{eq.}\; \geq \;\mathsf{Low}\;\mathsf{type}\;\mathsf{deviates}\;\mathsf{to}\;\emptyset$$

$$(\mathsf{HighIC\text{-}up}) \quad (1-\delta)\frac{1-q^n}{n(1-q)}(\overline{\theta}-\overline{b}^*)+\delta \mathsf{v}_\mathsf{fse}^* \geq (1-\delta)(\overline{\theta}-\overline{b}^*),$$

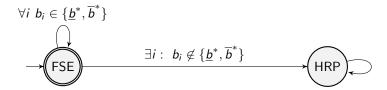
 $\mbox{High type eq.} \, \geq \mbox{High type deviates to} \, \, \overline{b}^* + \epsilon \,$

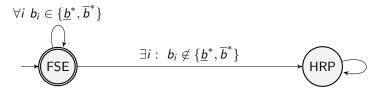
$$(\mathsf{HighIC\text{-}down}) \quad (1-\delta)\frac{1-q^n}{n(1-q)}(\overline{\theta}-\overline{b}^*)+\delta \mathsf{v}_{\mathsf{fse}}^* \geq (1-\delta)q^{n-1}(\overline{\theta}-\underline{b}^*),$$

High type eq. \geq High type deviates to $\underline{b}^* + \epsilon$

$$(\mathsf{HighIC\text{-}on\text{-}sch}) \ \ (1-\delta)\frac{1-q^n}{n(1-q)}(\overline{\theta}-\overline{b}^*) + \delta v_{\mathsf{fse}}^* \geq (1-\delta)\frac{q^{n-1}}{n}(\overline{\theta}-\underline{b}^*) + \delta v_{\mathsf{fse}}^*.$$

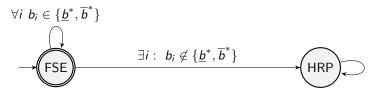
High type eq. > Mimic low type





Collusiveness: $v_{fse}^* \ge \sup v' | v' |$ is a SSPPE payoff in the Buyer-game.

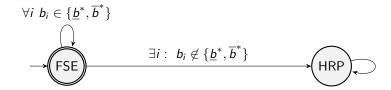
Optimal buyer-equilibrium problem

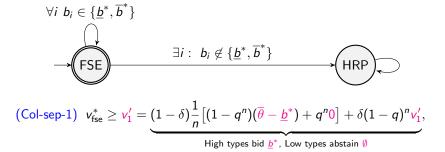


Collusiveness: $v_{fse}^* \ge \sup v' | v' |$ is a SSPPE payoff in the Buyer-game.

Optimal buyer-equilibrium problem: solution approach.

- Lemma: any buyer-equilibrium is monotonic $(\overline{b}' \geq \underline{b}')$ or $\underline{b}' = \emptyset$.
- Relaxed problem: maximize v' over monotonic bidding profiles.
 - MDP ⇒ stationary bidding profiles are w.l.o.g.





$$\forall i \ b_i \in \{\underline{b}^*, \overline{b}^*\}$$

$$\exists i : \ b_i \notin \{\underline{b}^*, \overline{b}^*\}$$

$$(Col-sep-1) \ v_{\mathsf{fse}}^* \geq v_1' = \underbrace{(1-\delta)\frac{1}{n}\big[(1-q^n)(\overline{\theta}-\underline{b}^*)+q^n0\big] + \delta(1-q)^nv_1',}_{\mathsf{High types bid }\underline{b}^*, \ \mathsf{Low types abstain }\emptyset}$$

$$(Col-sep-2) \ v_{\mathsf{fse}}^* \geq v_2' = \underbrace{(1-\delta)\frac{1}{n}\big[(1-q^n)(\overline{\theta}-\underline{b}^*)+q^n(\underline{\theta}-\underline{b}^*)\big] + \delta q^nv_2',}_{\mathsf{High types bid }\underline{b}^* + \epsilon, \ \mathsf{Low types bid }\underline{b}^*}$$

$$\forall i \ b_i \in \{\underline{b}^*, \overline{b}^*\}$$

$$\exists i : \ b_i \notin \{\underline{b}^*, \overline{b}^*\}$$

$$\mathsf{HRP}$$

(Col-sep-1)
$$v_{\text{fse}}^* \ge v_1' = \underbrace{(1-\delta)\frac{1}{n}\big[(1-q^n)(\overline{\theta}-\underline{\underline{b}}^*)+q^n0\big] + \delta(1-q)^nv_1'}_{n},$$

High types bid \underline{b}^* , Low types abstain \emptyset

(Col-sep-2)
$$v_{\text{fse}}^* \ge v_2' = \underbrace{(1-\delta)\frac{1}{n}[(1-q^n)(\overline{\theta}-\underline{b}^*)+q^n(\underline{\theta}-\underline{b}^*)]+\delta q^n v_2'}_{},$$

High types bid $\underline{\underline{b}}^* + \epsilon$, Low types bid $\underline{\underline{b}}^*$

(Col-pool)
$$v_{\mathsf{fse}}^* \ge v_{\mathsf{p}}' = (1 - \delta) \frac{1}{n} [(1 - q)(\overline{\theta} - \underline{b}^*) + q(\underline{\theta} - \underline{b}^*)] + \delta v_{\mathsf{p}}'.$$

Both types pool at b*

Revenue maximization problem

$$\mathcal{RM}: \ \left(\overline{\textit{b}}^*,\underline{\textit{b}}^*,\textit{v}_{\mathsf{fse}}^*\right) \in \arg\max_{\overline{\textit{b}},\underline{\textit{b}},\textit{v}} \ \mathsf{Revenue}, \ \ \mathsf{s.t.}$$

- (i) Incentive compatibility,
- (ii) Collusiveness.

Revenue maximization problem

$$\mathcal{RM}: \ \left(\overline{\textit{b}}^*,\underline{\textit{b}}^*,v_{\mathsf{fse}}^*\right) \in \arg\max_{\overline{\textit{b}},\underline{\textit{b}},\textit{v}} \ \mathsf{Revenue}, \ \ \mathsf{s.t.}$$

- (i) Incentive compatibility,
- (ii) Collusiveness.

Lemma

 $(\overline{b}^*, \underline{b}^*, v_{\mathsf{fse}}^*)$ defines a collusive public perfect equilibrium of the repeated auction game for high enough values of δ .

Revenue maximization problem

$$\mathcal{RM}: \ \left(\overline{\textit{b}}^*,\underline{\textit{b}}^*,\textit{v}^*_{\mathsf{fse}}\right) \in \arg\max_{\overline{\textit{b}},\underline{\textit{b}},\textit{v}} \ \mathsf{Revenue}, \ \ \mathsf{s.t.}$$

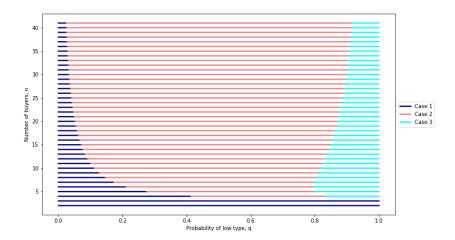
- (i) Incentive compatibility,
- (ii) Collusiveness.

Lemma

 $(\overline{b}^*, \underline{b}^*, v_{\mathsf{fse}}^*)$ defines a collusive public perfect equilibrium of the repeated auction game for high enough values of δ .

- \bullet Solve \mathcal{RM} by identifying binding constraints (3 on-path cases).
 - ullet Relax $\mathcal{RM} o$ show relaxed dual is feasible o check remaining con's.
- $\bullet \ \ \text{Show} \ \ \underset{f_{\text{se}}}{\textit{v}_{\text{fse}}^*}(\delta) \xrightarrow[\delta \to 1]{} 0 \text{, which} \ \Rightarrow \ \text{full surplus extraction as} \ \delta \to 1.$

Solution to \mathcal{RM} : 3 parameter regions



Solution to \mathcal{RM} : 3 cases

• Case 1: High expected valuation (low q).

```
(LowIC) Low type eq. = Low type deviates to \emptyset = 0, (Col-sep-1) v_{\text{fse}}^* = v_1' (High types bid \underline{b}^*, Low types abstain).
```

Solution to \mathcal{RM} : 3 cases

• Case 1: High expected valuation (low q).

```
(LowIC) Low type eq. = Low type deviates to \emptyset = 0, (Col-sep-1) v_{\rm fse}^* = v_1' (High types bid \underline{b}^*, Low types abstain).
```

Case 2: Medium expected valuation (medium q).

```
(HighIC-up) High type eq. = High type deviates to \overline{b}^* + \epsilon, (Col-sep-1) v_{\text{fse}}^* = v_1' (High types bid \underline{b}^*, Low types abstain).
```

Solution to \mathcal{RM} : 3 cases

• Case 1: High expected valuation (low q).

```
(LowIC) Low type eq. = Low type deviates to \emptyset = 0, (Col-sep-1) v_{\text{fse}}^* = v_1' (High types bid \underline{b}^*, Low types abstain).
```

Case 2: Medium expected valuation (medium q).

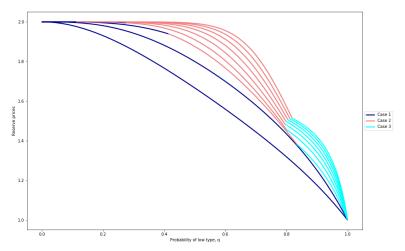
```
(HighIC-up) High type eq. = High type deviates to \overline{b}^* + \epsilon, (Col-sep-1) v_{\text{fse}}^* = v_1' (High types bid \underline{b}^*, Low types abstain).
```

Case 3: Low expected valuation (high q).

```
(HighIC-up) High type eq. = High type deviates to \overline{b}^* + \epsilon, (HighIC-down) High type eq. = High type deviates to \underline{b}^* + \epsilon.
```

Solution to \mathcal{RM} : $\lim_{\delta \to 1} \underline{b}^*(q, n, \delta)$

Parameters: $\underline{\theta}=$ 1, $\overline{\theta}=$ 2, $n\in\{2,3,\ldots,10\}$.



Pattern of binding constraints

Concluding remarks

- Repeated first-price auction game with a strategic Seller.
- Seller uses reserve prices to counteract Buyers' collusion.
- Collusive public perfect equilibrium.
- A collusive *PPE* that allows Seller to extract full surplus as $\delta \to 1$.
 - \Rightarrow Seller can successfully fight collusion using dynamic reserve prices.

- 4 Literature
- 5 High-reserve-price region
- Proofs for low-revenue equilibria
- Definitions
 - Strongly symmetric public perfect equilibrium
 - Buyer-game
 - Collusive public perfect equilibrium
 - σ_0 -consistent histories
- Pattern of binding constraints

Roadmap

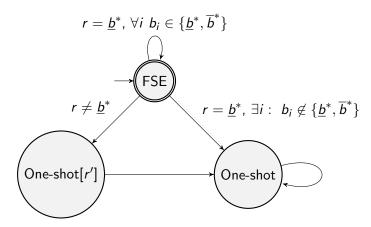
- 4 Literature
- 6 High-reserve-price region
- 6 Proofs for low-revenue equilibria
- Definitions
 - Strongly symmetric public perfect equilibrium
 - Buyer-game
 - Collusive public perfect equilibrium
 - σ_0 -consistent histories
- 8 Pattern of binding constraints

Literature

- Reserve price as anti-collusion device: Thomas (2005); Zhang (2021); Iossa, Loertscher, Marx and Rey (2022).
- Stage game design: Abdulkadiroglu and Chung (2004).
- Collusion detection in auctions with adaptive bidders: Chassang, Kawai, Nakabayashi and Ortner (2022a, 2022b, 2022c).
- Repeated games/oligopolies/auctions: Abreu, Pearce and Stachetti (1990); Fudenberg, Levine and Maskin (1994); Athey, Bagwell and Sanchirico (2004); Skrzypacz and Hopenhayn (2004); ...
- Dynamic Mechanism Design: Pavan, Segal, and Toikka (2014); ...

- 4 Literature
- 5 High-reserve-price region
- 6 Proofs for low-revenue equilibria
- Definitions
 - Strongly symmetric public perfect equilibrium
 - Buyer-game
 - Collusive public perfect equilibrium
 - σ_0 -consistent histories
- 8 Pattern of binding constraints

Full surplus extraction (FSE) equilibrium, High-reserve-price region, illustration



- One-shot: $r_{os}^* = \overline{\theta}$.
- One-shot [r']: low types abstain, high types mix on $[r', \cdot]$.

- 4 Literature
- 5 High-reserve-price region
- Proofs for low-revenue equilibria
- Definitions
 - Strongly symmetric public perfect equilibrium
 - Buyer-game
 - Collusive public perfect equilibrium
 - σ_0 -consistent histories
- Pattern of binding constraints

Zero-revenue pooling equilibrium, proof sketch

- Seller has no profitable deviation.
- Buyers' off-schedule deviations:

$$\underbrace{\delta \frac{1}{n} \big[(1-q)\overline{\theta} + q\underline{\theta} \big]}_{\text{High type abstains}} \geq \underbrace{(1-\delta)\overline{\theta} + \delta(1-q)q^{n-1}(\overline{\theta} - \underline{\theta})}_{\text{High type deviates to }\epsilon},$$

unprofitable for:

$$\delta \geq \frac{n\overline{\theta}}{n\overline{\theta} + q\underline{\theta} + (1-q)\overline{\theta} - n(1-q)q^{n-1}(\overline{\theta} - \underline{\theta})}.$$

- **Definitions**
 - Strongly symmetric public perfect equilibrium
 - Buver-game
 - Collusive public perfect equilibrium
 - σ_0 -consistent histories

1. Strongly symmetric public perfect equilibrium

• Public histories:

Seller:
$$\mathcal{H}_0 \ni h_0^{t+1} = (\emptyset, (r^0, b_1^0, ..., b_n^0), ..., (r^t, b_1^t, ..., b_n^t)).$$

Buyers: $\mathcal{H} \ni h^{t+1} = (\emptyset, -"-, ..., -"-, r^{t+1}).$

• Public strategies:

Seller: $\sigma_0: \mathcal{H}_0 \to \mathbb{R}_+$.

Buyers: $\sigma_i : \mathcal{H} \times \Theta \to \{\emptyset\} \cup \mathbb{R}_+$.

Definition

- A public strategy profile is a public perfect equilibrium if it induces a Nash equilibrium after any public history.
- A public perfect equilibrium is **strongly symmetric** if Buyers adopt symmetric bidding profiles on and off equilibrium path.
- Focus on pure strategies.

Back to Informal

- 4 Literature
- 6 High-reserve-price region
- 6 Proofs for low-revenue equilibria
- Definitions
 - Strongly symmetric public perfect equilibrium
 - Buyer-game
 - Collusive public perfect equilibrium
 - σ_0 -consistent histories
- 8 Pattern of binding constraints

2. Buyer-game: preliminaries

Definition

- A public history in \mathcal{H}_0 is called σ_0 -consistent if it is consistent with Seller's play of public strategy σ_0 .
- Two σ_0 -consistent histories are called σ_0 -equivalent if they prescribe the same Seller's continuation play according to σ_0 .
- Set of equivalence classes \equiv set of states of the Buyer-game.
- r: maps states into reserve prices. For any history h_0 from state ω , we have $r(\omega) = \sigma_0(h_0)$.
- τ : defines state transitions. For a bid profile b, $\tau(\omega, b) = \omega'$ if For any history h_0 from state ω , history $(h_0, r(\omega), b)$ is in state ω' .

2. Buyer-game: definition

Definition

The **buyer-game induced by** σ_0 is a stochastic game where:

- Players: Buyers.
- Actions: same as in full repeated auction game.
- States: classes of σ_0 -equivalent histories.
- State transitions occur according to τ .
- Set of valuations: same as in full repeated auction game.
- Utility functions:

$$\tilde{u}_i(\omega, b, \theta_i) = \begin{cases} \frac{1}{\#(\mathsf{win})}(\theta_i - b_i), & \text{if } b_i \geq r(\omega) \ \& \ \left(b_i = \mathsf{max}\{b\} \text{ or } b_{-i} = \emptyset\right) \\ 0, & \text{otherwise.} \end{cases}$$

2. Buyer-game: equilibria

Public hist.:
$$\mathbf{H}(\sigma_0) \ni \mathbf{h}^{t+1} = \left(\omega^0, (b_1^0, ..., b_n^0), ..., \omega^t, (b_1^t, ..., b_n^t), \ \omega^{t+1}\right)$$

Public Strat.: $\rho_i : \mathbf{H}(\sigma_0) \times \Theta \to \{\emptyset\} \cup \mathbb{R}_+$.

Definition

A public strategy profile $(\rho_1^*, \dots, \rho_n^*)$ is a **strongly symmetric public perfect equilibrium of the buyer-game** induced by σ_0 if

- **1** It induces a Nash equilibrium after every public history in $\mathbf{H}(\sigma_0)$.
- ② Buyers use strongly symmetric strategies, i.e. $\rho_i^*(\mathbf{h},\cdot) = \rho_j^*(\mathbf{h},\cdot)$ after every public history $\mathbf{h} \in \mathbf{H}(\sigma_0)$ for any two buyers i,j.

Back to Informal

- **Definitions**
 - Strongly symmetric public perfect equilibrium
 - Buver-game
 - Collusive public perfect equilibrium
 - σ_0 -consistent histories

Collusive public perfect equilibrium

Definition

A public strategy profile $(\sigma_0^*, \sigma^*, ..., \sigma^*)$ is a **collusive (on-path) public perfect equilibrium** of the repeated auction game if

- 1 It is a strongly symmetric public perfect equilibrium.
- ② There is no strongly symmetric public perfect equilibrium in the buyer-game induced by σ_0^* , whose equilibrium payoff exceeds the buyer payoff from $(\sigma_0^*, \sigma^*, ..., \sigma^*)$ in the repeated auction game.

Back to Informal

- 4 Literature
- 6 High-reserve-price region
- 6 Proofs for low-revenue equilibria
- Definitions
 - Strongly symmetric public perfect equilibrium
 - Buyer-game
 - Collusive public perfect equilibrium
 - σ_0 -consistent histories
- 8 Pattern of binding constraints

σ_0 -consistent histories

• A typical time-t history consistent with the seller's play according to σ_0 is:

$$\begin{split} h_0^t &= \bigg(\varnothing, \ \big(\sigma_0(\varnothing), \ b^0 \big), \ \big(\sigma_0(h_0^0), \ b^1 \big), \ \ldots, \ \big(\sigma_0(h_0^{t-2}), \ b^{t-1} \big) \bigg), \end{split}$$
 where
$$h_0^0 &= \big(\sigma_0(\varnothing), \ b^0 \big), \\ h_0^1 &= \bigg(\big(\sigma_0(\varnothing), \ b^0 \big), \ \big(\sigma_0(h_0^0), \ b^1 \big) \bigg), \\ \ldots, \end{split}$$

$$h_0^{t-1} = \Big((\sigma_0(\emptyset), b^0), (\sigma_0(h_0^0), b^1), \ldots, (\sigma_0(h_0^{t-3}), b^{t-2}) \Big).$$

- 4 Literature
- 6 High-reserve-price region
- 6 Proofs for low-revenue equilibria
- Definitions
 - Strongly symmetric public perfect equilibrium
 - Buyer-game
 - Collusive public perfect equilibrium
 - σ_0 -consistent histories
- Pattern of binding constraints

Pattern of binding constraints

LowIC, HighIC-up, HighIC-down, Col-sep-1 determine the eq. bids.

- For every n: LowIC binds for low q, HighIC-up binds for high q,
- For every n: Col-sep-1 binds for low q, HighlC-down binds for high q.

Pattern of binding constraints

LowIC, HighIC-up, HighIC-down, Col-sep-1 determine the eq. bids.

- For every n: LowIC binds for low q, HighIC-up binds for high q,
- For every n: Col-sep-1 binds for low q, HighlC-down binds for high q.

Col-sep-2, Col-pool, HighlC-on-sch don't bind for any q, n.

LowIC vs. HighIC-up

LowIC & HighIC-up are con's on ex post reward ratios:

$$(\mathsf{LowIC}) \quad \frac{\underline{\theta} - \underline{b}}{\overline{\theta} - \overline{b}} \geq \frac{0 - \frac{\delta}{1 - \delta} (1 - q) \, \mathbb{P} \left(\mathsf{win} \big| \overline{\theta} \right)}{\mathbb{P} \left(\mathsf{win} \big| \underline{\theta} \right) + \frac{\delta}{1 - \delta} q \, \mathbb{P} \left(\mathsf{win} \big| \underline{\theta} \right)} = \underline{R}_{\mathsf{L}} (\delta, q, n),$$

$$(\mathsf{HighIC\text{-}up}) \quad \frac{\underline{\theta} - \underline{b}}{\overline{\theta} - \overline{b}} \geq \frac{1 - \left[\, \mathbb{P} \left(\mathsf{win} \big| \overline{\theta} \right) + \frac{\delta}{1 - \delta} (1 - q) \, \mathbb{P} \left(\mathsf{win} \big| \overline{\theta} \right) \right]}{\frac{\delta}{1 - \delta} q \, \mathbb{P} \left(\mathsf{win} \big| \underline{\theta} \right)} = \underline{R}_{\mathsf{H}}(\delta, q, \textbf{\textit{n}}).$$

LowIC vs. HighIC-up

LowIC & HighIC-up are con's on ex post reward ratios:

$$(\mathsf{LowIC}) \quad \frac{\underline{\theta} - \underline{b}}{\overline{\theta} - \overline{b}} \geq \frac{0 - \frac{\delta}{1 - \delta} (1 - q) \, \mathbb{P} \left(\mathsf{win} \big| \overline{\theta} \right)}{\mathbb{P} \left(\mathsf{win} \big| \underline{\theta} \right) + \frac{\delta}{1 - \delta} q \, \mathbb{P} \left(\mathsf{win} \big| \underline{\theta} \right)} = \underline{R}_{\mathsf{L}} (\delta, q, \textit{n}),$$

$$(\mathsf{HighIC\text{-}up}) \qquad \frac{\underline{\theta} - \underline{b}}{\overline{\theta} - \overline{b}} \geq \frac{1 - \left[\, \mathbb{P}\left(\mathsf{win} \big| \overline{\theta} \right) + \frac{\delta}{1 - \delta} (1 - q) \, \mathbb{P}\left(\mathsf{win} \big| \overline{\theta} \right) \, \right]}{\frac{\delta}{1 - \delta} \, q \, \mathbb{P}\left(\mathsf{win} \big| \underline{\theta} \right)} = \underline{R}_{\mathsf{H}}(\delta, q, n).$$

- $\underline{R}_L(\delta,q,n)$ & $\underline{R}_H(\delta,q,n)$ both go to $-\frac{1-q^n}{q^n}$ as $\delta \to 1$, but for every n $\underline{R}_L(\delta,q,n) < \underline{R}_H(\delta,q,n)$ for any high q,δ ; and vice versa.
 - \Rightarrow HighlC-up must be binding for high q, δ .

Illustration of $\underline{R}_L(\delta, \frac{1}{5}, 4)$ and $\underline{R}_H(\delta, \frac{1}{5}, 4)$

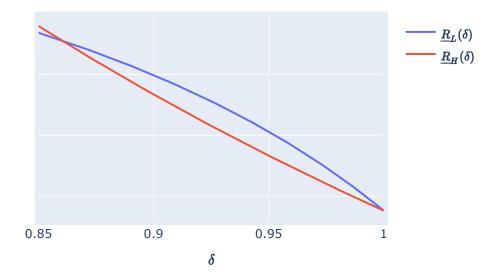


Illustration of $\underline{R}_L(\delta, \frac{1}{4}, 4)$ and $\underline{R}_H(\delta, \frac{1}{4}, 4)$

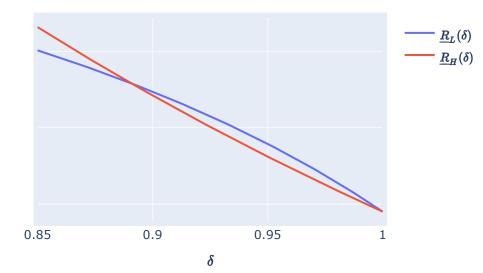
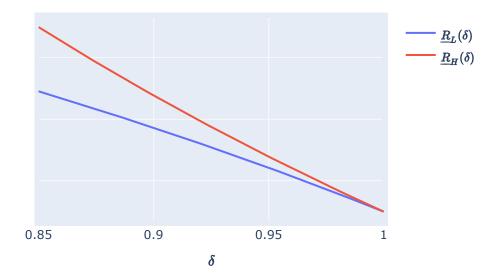


Illustration of $\underline{R}_L(\delta, \frac{1}{2}, 4)$ and $\underline{R}_H(\delta, \frac{1}{2}, 4)$



In this case, intuition is more straightforward:

In this case, intuition is more straightforward:

• As q grows, deviating to $\underline{b}^* + \epsilon$ becomes more profitable.

In this case, intuition is more straightforward:

$$(\mathsf{HighIC\text{-}down}) \quad \mathsf{High \ type \ eq. \ payoff} \geq \underbrace{(1-\delta)q^{n-1}(\overline{\theta}-\underline{b}^*)}_{\mathsf{High \ type \ deviates \ to}} \,.$$

• As q grows, deviating to $\underline{b}^* + \epsilon$ becomes more profitable.

$$\text{(Col-sep-1)} \quad \text{Ex ante eq. payoff} \geq \underbrace{ (1-\delta) \frac{1}{n} (1-q^n) (\overline{\theta} - \underline{\underline{b}}^*) + \delta (1-q)^n \underline{\nu_1'}}_{\text{High types bid } \underline{b}^*, \text{ Low types abstain } \emptyset}.$$

• As q grows, this collusive scheme becomes less profitable.

In this case, intuition is more straightforward:

• As q grows, deviating to $\underline{b}^* + \epsilon$ becomes more profitable.

(Col-sep-1) Ex ante eq. payoff
$$\geq \underbrace{(1-\delta)\frac{1}{n}(1-q^n)(\overline{\theta}-\underline{b}^*)+\delta(1-q)^n\mathbf{v}_1'}_{\text{High types bid }b^*, \text{ Low types abstain }\emptyset}.$$

- As q grows, this collusive scheme becomes less profitable.
- \Rightarrow For high q (many low types) collusion is not a concern.

Non-binding collusiveness constraints

(Col-sep-2)
$$v_{\text{fse}}^* \ge v_2' = \underbrace{(1-\delta)\frac{1}{n}\big[(1-q^n)(\overline{\theta}-\underline{b}^*)+q^n(\underline{\theta}-\underline{b}^*)\big]+\delta q^nv_2'}_{\text{High types bid }\underline{b}^*+\epsilon,\text{ Low types bid }\underline{b}^*}.$$

 $\underline{b}^* > \underline{\theta} \Rightarrow$ all positive-reward types punished with probability 1.

Non-binding collusiveness constraints

(Col-sep-2)
$$v_{\mathsf{fse}}^* \geq v_2' = \underbrace{(1-\delta)\frac{1}{n}\big[(1-q^n)(\overline{\theta}-\underline{\underline{b}}^*) + q^n(\underline{\theta}-\underline{\underline{b}}^*)\big] + \delta q^n v_2'}_{\mathsf{High types bid }\underline{b}^* + \epsilon, \mathsf{Low types bid }\underline{b}^*}.$$

 $\underline{b}^* > \underline{\theta} \Rightarrow$ all positive-reward types punished with probability 1.

(Col-pool)
$$v_{\mathrm{fse}}^* \ge v_{\mathrm{p}}' = \underbrace{(1-\delta)\frac{1}{n}\big[(1-q)(\overline{\theta}-\underline{b}^*)+q(\underline{\theta}-\underline{b}^*)\big]+\delta v_{\mathrm{p}}'}_{\mathrm{Both types pool at }\underline{b}^*}.$$

Gain from lower bidding, but allocative efficiency loss from pooling.

• Turns out, $|\mathsf{Gain}| < |\mathsf{Loss}|$, moreover $\lim_{\delta \to 1} v_p'(\delta) < 0$ in all 3 cases.

Non-binding IC constraint

Consider HighlC-on-sch and compare to HighlC-down:

(HighIC-on-sch) High type eq. payoff
$$\geq \underbrace{(1-\delta)\frac{q^{n-1}}{n}(\overline{\theta}-\underline{b}^*)+\delta v_{\mathrm{fse}}^*}_{\text{Mimic low type}}$$
 (HighIC-down) High type eq. payoff $\geq \underbrace{(1-\delta)q^{n-1}(\overline{\theta}-\underline{b}^*)+\delta 0}_{\text{Deviate to }b^*+\epsilon}$

Non-binding IC constraint

Consider HighlC-on-sch and compare to HighlC-down:

(HighIC-on-sch) High type eq. payoff
$$\geq \underbrace{(1-\delta)\frac{q^{n-1}}{n}(\overline{\theta}-\underline{b}^*)+\delta v_{\rm fse}^*}_{\text{Mimic low type}}$$
 (HighIC-down) High type eq. payoff $\geq \underbrace{(1-\delta)q^{n-1}(\overline{\theta}-\underline{b}^*)+\delta 0}_{\text{Deviate to }b^*+\epsilon}$

Given $v_{\rm fse}^* \approx 0$ for high δ , deviating off-schedule is more tempting.

