Game Theory, Spring 2024

Lecture $\# 10^*$

Daniil Larionov

This version: May 19, 2024 Click here for the latest version

1 Automaton representation of strategy profiles

Definition 1. An automaton is a tuple (W, w^0, f, τ) , where

- W is the set of automaton states, w^0 is the initial state of the automaton,
- $f: W \to A$ is a decision function,
- $\tau: W \times A \rightarrow W$ is a transition function.

We can use automata to represent strategy profiles in infinitely repeated games as in the following examples:

Example 1 (Grim-trigger, Grim-trigger).

- Set of states: $W = \{w_{cc}, w_{dd}\}; w^0 = w_{cc};$
- Decision function: $f(w_{cc}) = (c, c), f(w_{dd}) = (d, d);$
- Transition function:

$$\tau(w,a) = \begin{cases} w_{cc} & \text{if } w = w_{cc} \text{ and } a = (c,c); \\ w_{dd} & \text{otherwise.} \end{cases}$$

*These notes are adapted from *"Repeated Games and Reputations"* by George J. Mailath and Larry Samuelson.

Example 2 (k-punishment, k-punishment).

- Set of states: $W = \{w_{cc}, w_{dd_1}, \dots, w_{dd_k}\}; w^0 = w_{cc};$
- Decision function: $f(w_{cc}) = (c, c), f(w_{dd_1}) = \cdots = f(w_{dd_k}) = (d, d);$
- Transition function:

$$\tau(w, a) = \begin{cases} w_{cc} & \text{if } (w = w_{cc} \text{ and } a = (c, c)) \text{ or } w = w_{dd_k}; \\ w_{dd_1} & \text{if } w = w_{cc} \text{ and } a \neq (c, c); \\ w_{dd_2} & \text{if } w = w_{dd_1}; \\ \vdots & & \\ w_{dd_k} & \text{if } w = w_{dd_{k-1}}. \end{cases}$$

Suppose the automaton (W, w^0, f, τ) represents a strategy profile σ , and use $V_i(w)$ to denote player *i*'s discounted payoff from the play according to (W, w^0, f, τ) that begins in state $w \in W$. We can write $V_i(w)$ as follows:

$$V_i(w) = (1 - \delta)u_i(f(w)) + \delta V_i(\tau(w, f(w))).$$

We can establish the following proposition:

Proposition 1. The strategy profile σ is a subgame-perfect Nash equilibrium if and only if for any $w \in W$ accessible¹ from w^0 , the action profile f(w) is a Nash equilibrium of the strategic-form game $\mathcal{G}^w \equiv (\mathcal{I}, A, \{g_i^w\}_{i \in \mathcal{I}})$, where

$$g_i^w(a_i, a_{-i}) \equiv (1 - \delta)u_i(a_i, a_{-i}) + \delta V_i(\tau(w, (a_i, a_{-i}))).$$

Proof. "If": Suppose f(w) is a Nash equilibrium of \mathcal{G}^w for all $w \in W$ accessible from w^0 . Let $\hat{\sigma}_i$ be a one-shot deviation from σ_i for player i such that $\hat{a}_i = \hat{\sigma}_i(\hat{h}^t) \neq \sigma_i(\hat{h}^t)$

 $^{^{1}}w$ is accessible from w^{0} if there exists a history of play such that, beginning in w^{0} , the automaton reaches w after that history.

for some history \hat{h}^t . The deviating continuation payoff from \hat{h}^t is given by:

$$\begin{split} U_{i}(\hat{\sigma}_{i}|_{\hat{h}^{t}}, \sigma_{-i}|_{\hat{h}^{t}}) &= (1-\delta)u_{i}(\hat{a}_{i}, \sigma_{-i}|_{\hat{h}^{t}}(\emptyset)) + \delta V_{i}\big(\tau\big(w, (\hat{a}_{i}, \sigma_{-i}|_{\hat{h}^{t}}(\emptyset))\big)\big) \\ &= (1-\delta)u_{i}\big(\hat{a}_{i}, f_{-i}(w)\big) + \delta V_{i}\big(\tau\big(w, (\hat{a}_{i}, f_{-i}(w))\big)\big) \\ &\leq (1-\delta)u_{i}\big(f_{i}(w), f_{-i}(w)\big) + \delta V_{i}\big(\tau\big(w, (f_{i}(w), f_{-i}(w))\big)\big) \ [f(w) \text{ is a NE of } \mathcal{G}^{w}] \\ &= (1-\delta)u_{i}\big(\sigma_{i}|_{\hat{h}^{t}}(\emptyset), \sigma_{-i}|_{\hat{h}^{t}}(\emptyset)\big) + \delta V_{i}\big(\tau\big(w, (\sigma_{i}|_{\hat{h}^{t}}(\emptyset), \sigma_{-i}|_{\hat{h}^{t}}(\emptyset))\big)\big) \\ &= U_{i}\big(\sigma_{i}|_{\hat{h}^{t}}, \sigma_{-i}|_{\hat{h}^{t}}\big), \end{split}$$

hence this one-shot deviation is not profitable. The one-shot deviation principle then implies that σ is a subgame-perfect Nash equilibrium.

"Only if": Suppose f(w) is not a Nash equilibrium of \mathcal{G}^w for some $w \in W$ accessible from w^0 , then there exists a deviation \hat{a}_i such that

$$(1-\delta)u_i(\hat{a}_i, f_{-i}(w)) + \delta V_i(\tau(w, (\hat{a}_i, f_{-i}(w)))) > (1-\delta)u_i(f(w)) + \delta V_i(\tau(w, f(w))).$$
(1)

Since w is accessible from w^0 , there is a history \hat{h}^t such that the automaton (W, w^0, f, τ) ends up in state w after history \hat{h}^t . Consider the following one-shot deviation from σ_i :

$$\hat{\sigma}_i(h^{\tau}) = \begin{cases} \hat{a}_i & \text{if } h^{\tau} = \hat{h}^t, \\ \sigma_i(h^{\tau}) \text{ if } h^{\tau} \neq \hat{h}^t. \end{cases}$$

The deviating continuation payoff from \hat{h}^t is given by:

$$\begin{aligned} U_{i}(\hat{\sigma}_{i}|_{\hat{h}^{t}}, \sigma_{-i}|_{\hat{h}^{t}}) &= (1-\delta)u_{i}(\hat{a}_{i}, \sigma_{-i}|_{\hat{h}^{t}}(\emptyset)) + \delta V_{i}(\tau(w, (\hat{a}_{i}, \sigma_{-i}|_{\hat{h}^{t}}(\emptyset)))) \\ &= (1-\delta)u_{i}(\hat{a}_{i}, f_{-i}(w)) + \delta V_{i}(\tau(w, (\hat{a}_{i}, f_{-i}(w)))) \\ &> (1-\delta)u_{i}(f_{i}(w), f_{-i}(w)) + \delta V_{i}(\tau(w, (f_{i}(w), f_{-i}(w)))) \text{ [by Inequality (1)]} \\ &= (1-\delta)u_{i}(\sigma_{i}|_{\hat{h}^{t}}(\emptyset), \sigma_{-i}|_{\hat{h}^{t}}(\emptyset)) + \delta V_{i}(\tau(w, (\sigma_{i}|_{\hat{h}^{t}}(\emptyset), \sigma_{-i}|_{\hat{h}^{t}}(\emptyset)))) \\ &= U_{i}(\sigma_{i}|_{\hat{h}^{t}}, \sigma_{-i}|_{\hat{h}^{t}}), \end{aligned}$$

thus $\hat{\sigma}_i$ is a profitable deviation from σ_i , and σ therefore cannot be a subgame-perfect Nash equilibrium.

2 Self-generation

Let \mathcal{E} be an arbitrary subset of $\mathcal{F} \equiv conv(\{v|v=u(a), a \in A\})^2$, the set of feasible payoff profiles. We introduce the following definitions:

Definition 2 (Enforceability). A pure action profile a^* is enforceable on $\mathcal{E} \subseteq \mathcal{F}$ if there exist continuation payoffs $\gamma : A \to \mathcal{E}$ such that for every player *i* and every action $a_i \in A_i$ we have:

$$(1-\delta)u_i(a_i^*, a_{-i}^*) + \delta\gamma_i(a_i^*, a_{-i}^*) \ge (1-\delta)u_i(a_i, a_{-i}^*) + \delta\gamma_i(a_i, a_{-i}^*) + \delta\gamma_i(a_i$$

Definition 3 (Decomposability). A payoff profile $v \in \mathcal{F}$ is decomposable on $\mathcal{E} \subseteq \mathcal{F}$ if there exists an action profile a^* , enforceable on \mathcal{E} , such that for each player i

$$v_i = (1 - \delta)u_i(a_i^*, a_{-i}^*) + \delta\gamma_i(a_i^*, a_{-i}^*),$$

where γ_i is the continuation payoff enforcing a^* on \mathcal{E} for player *i*.

Definition 4 (Self-generation). \mathcal{E} is self-generating if any payoff profile $v \in \mathcal{E}$ is decomposable on \mathcal{E} .

We establish the following proposition:

Proposition 2. If \mathcal{E} is self-generating, then \mathcal{E} is a set of subgame-perfect Nash equilibrium payoffs.

Proof. Since \mathcal{E} is self-generating, for every $v \in \mathcal{E}$ there is a decomposing action profile $\tilde{a}(v)$ and its enforcing continuation payoff $\gamma^v : A \to \mathcal{E}$ such that for every player i and every action $a_i \in A_i$ we have:

$$(1-\delta)u_i\big(\tilde{a}_i(v),\tilde{a}_{-i}(v)\big)+\delta\gamma_i^v\big(\tilde{a}_i(v),\tilde{a}_{-i}(v)\big)\geq (1-\delta)u_i\big(a_i,\tilde{a}_{-i}(v)\big)+\delta\gamma_i^v\big(a_i,\tilde{a}_{-i}(v)\big).$$

Take any arbitrary payoff profile $v^0 \in \mathcal{E}$ and define the following automaton:

• Set of states is \mathcal{E} , the initial state is v^0 ,

 $^{^{2}}conv(\{v|v = u(a), a \in A\})$ denotes the convex hull of $\{v|v = u(a), a \in A\}$, the smallest convex set that contains $\{v|v = u(a), a \in A\}$. In other words, \mathcal{F} is the set all of payoff profiles that can be obtained via (possibly) correlated randomizations over all pure action profiles.

- Decision function: $f(v) = \tilde{a}(v)$,
- Transition function: $\tau(v, a) = \gamma^v(a)$.

Let $\{(v^t, \tilde{a}(v^t))\}_{t=0}^{\infty}$ be the sequence of payoff and action profiles that realize when the players play according to the automaton $(\mathcal{E}, v^0, \tilde{a}(v), \gamma^v(a))$, i.e. $v^t \equiv \gamma^{v^{t-1}}(a^{t-1})$ for all t > 0 and $(v^0, \tilde{a}(v^0))$ is the initial element of the sequence. We then have

$$v_i^0 = (1-\delta) \sum_{\tau=0}^{t-1} \delta^\tau u_i \big(\tilde{a}(v^\tau) \big) + \delta^t v^t \xrightarrow[t \to \infty]{} (1-\delta) \sum_{\tau=0}^{\infty} \delta^\tau u_i \big(\tilde{a}(v^\tau) \big) = V_i(v^0),$$

i.e. v_i^0 is the payoff of player *i* if the players play according to the automaton $(\mathcal{E}, v^0, \tilde{a}(v), \gamma^v(a))$ with the initial state v^0 . Since v^0 was arbitrarily chosen, we have for every state $v \in \mathcal{E}$, and every player *i* and every $a_i \in A_i$

$$v_i = (1-\delta)u_i\big(\tilde{a}_i(v), \tilde{a}_{-i}(v)\big) + \delta V_i\big(\gamma^v\big(\tilde{a}_i(v), \tilde{a}_{-i}(v)\big)\big) \ge (1-\delta)u_i\big(a_i, \tilde{a}_{-i}(v)\big) + \delta V_i\big(\gamma^v\big(a_i, \tilde{a}_{-i}(v)\big)\big).$$

Proposition 1 then implies that for any $v \in \mathcal{E}$ the automaton $(\mathcal{E}, v, \tilde{a}(v), \gamma^{v}(a))$ represents a subgame-perfect Nash equilibrium with the payoff profile v. \Box

Let us use \mathcal{E}^* to denote the set of all subgame-perfect Nash equilibrium payoffs. The following corollary is immediate:

Corollary 1. \mathcal{E}^* is the largest self-generating set.

Example 3. Consider the following infinitely repeated prisoner's dilemma:

	c	d
c	5, 5	1, 6
d	6, 1	2, 2

We establish the following claim:

Claim 1. The set $\{(2,2); (5,5)\}$ is self-generating for sufficiently high δ 's.

Proof. Consider (2,2) first. It is enforced by (d,d) as long as the following decomposability and incentive compatibility constraints are satisfied:

$$2 = (1 - \delta)2 + \delta\gamma_1(d, d) \ge (1 - \delta)1 + \delta\gamma_1(c, d)$$
$$2 = (1 - \delta)2 + \delta\gamma_2(d, d) \ge (1 - \delta)1 + \delta\gamma_2(d, c)$$

Selecting $(\gamma_1(d, d), \gamma_2(d, d)) = (2, 2); (\gamma_1(c, d), \gamma_2(c, d)) = (2, 2), \text{ and } (\gamma_1(d, c), \gamma_2(d, c)) = (2, 2)$ makes sure that this is the case for all $\delta \in (0, 1)$.

Consider now (5, 5). It is enforced by (c, c) as long as the following decomposability and incentive compatibility constraints are satisfied:

$$5 = (1 - \delta)5 + \delta\gamma_1(c, c) \ge (1 - \delta)6 + \delta\gamma_1(d, c)$$

$$5 = (1 - \delta)5 + \delta\gamma_2(c, c) \ge (1 - \delta)6 + \delta\gamma_2(c, d)$$

Selecting $(\gamma_1(c,c),\gamma_2(c,c)) = (5,5); (\gamma_1(c,d),\gamma_2(c,d)) = (2,2), \text{ and } (\gamma_1(d,c),\gamma_2(d,c)) = (2,2)$ makes sure that this is the case as long as $5 \ge (1-\delta)6 + \delta^2$ or $\delta \ge \frac{1}{4}$. \Box