Game Theory, Spring 2024

Lecture \# 12

Daniil Larionov

This version: May 29, 2024
Click here for the latest version

1 Extreme points of the set of correlated of equilibria

We have shown that for any strategic-form game $\Gamma=\left(\mathcal{I}, A,\left\{u_{i}\right\}_{i \in \mathcal{I}}\right)$ the set of its correlated equilibria $C E(\Gamma)$ is convex and compact. Such sets can be characterized via their extreme points.

Definition 1 (Extreme point). A point α in a convex set C is an extreme point of C if there are no two distinct points $\alpha^{\prime} \in C$ and $\alpha^{\prime \prime} \in C$, and no $\lambda \in(0,1)$ such that $\alpha=\lambda \alpha^{\prime}+(1-\lambda) \alpha^{\prime \prime}$. We write $\alpha \in \operatorname{extreme}(C)$.

Suppose $\alpha \in C E(\Gamma)$, to check whether $\alpha \in \operatorname{extreme}(C E(\Gamma))$, do the following:

1. Identify the binding incentive constraints (i.e. satisfied by α as equalities), and let $I C^{*}$ denote the set of those incentive constraints.
2. Identify the binding non-negativity constraints (i.e. satisfied by α as equalities), and let $N N^{*}$ denote the set of those non-negativity constraints.
3. Write down the following system of binding constraints:

$$
\begin{align*}
\left(\mathrm{IC}_{\left(a_{i}, \tilde{a}_{i}\right)}^{*}\right) & \sum_{a_{-i} \in A_{-i}} \alpha\left(a_{i}, a_{-i}\right)\left[u_{i}\left(a_{i}, a_{-i}\right)-u_{i}\left(\tilde{a}_{i}, a_{-i}\right)\right]=0 \quad \forall\left(a_{i}, \tilde{a}_{i}\right) \text { s.t. } \mathrm{IC}_{\left(a_{i}, \tilde{a}_{i}\right)} \in I C^{*}, \\
\left(\mathrm{NN}_{a}^{*}\right) & \alpha(a)=0 \quad \forall a \text { s.t. } \mathrm{NN}_{a} \in N N^{*}, \tag{1}\\
(\text { Prob }) & \sum_{a \in A} \alpha(a)=1 .
\end{align*}
$$

4. Check whether α is the unique solution to the system of binding constraints in (1). We will show below that $\alpha \in \operatorname{extreme}(C E(\Gamma))$ if and only if α is the unique solution to System (1).

Example 1. Consider the strategic-form game Γ_{1} from Lecture $\# 11$:

	L	R
	1	
	4,4	1,5
	5,1	0,0

Take $\alpha=(x, y, z, w)=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0\right) \in C E\left(\Gamma_{1}\right)$. Let's check whether $\alpha \in \operatorname{extreme}\left(C E\left(\Gamma_{1}\right)\right)$.

1. Identify the binding incentive constraints:

$$
\begin{array}{ll}
\left(\mathrm{IC}_{T}\right) & -x+y=-\frac{1}{3}+\frac{1}{3}=0, \\
\left(\mathrm{IC}_{B}\right) & z-w=\frac{1}{3}-0=\frac{1}{3}>0, \\
\left(\mathrm{IC}_{L}\right) & -x+z=-\frac{1}{3}+\frac{1}{3}=0, \\
\left(\mathrm{IC}_{R}\right) & y-w=\frac{1}{3}-0=\frac{1}{3}>0,
\end{array}
$$

2. Identify the binding non-negativity constraints:

$$
\text { (NN) } \quad x>0, y>0, z>0, w=0
$$

3. Write down the system of binding constraints:

$$
\begin{aligned}
\left(\mathrm{IC}_{T}^{*}\right) & -x+y=0, \\
\left(\mathrm{IC}_{L}^{*}\right) & -x+z=0, \\
\left(\mathrm{NN}_{(B, R)}^{*}\right) & w=0, \\
(\text { Prob }) & x+y+z+w=1 .
\end{aligned}
$$

4. Check whether α is the unique solution to the system of binding constraints.

The unique solution to the system of binding constraints is $\alpha=(x, y, z, w)=$ $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0\right)$, hence $\alpha \in \operatorname{extreme}\left(C E\left(\Gamma_{1}\right)\right)$.

Example 2. Consider the strategic-form game Γ_{1} from Lecture \#11:

	L	R
T	4,4	1,5
B	5,1	0,0

Take $\alpha=(x, y, z, w)=\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{2}, 0\right) \in C E\left(\Gamma_{1}\right)$. Let's check whether $\alpha \in \operatorname{extreme}\left(C E\left(\Gamma_{1}\right)\right)$.

1. Identify the binding incentive constraints:

$$
\begin{array}{ll}
\left(\mathrm{IC}_{T}\right) & -x+y=-\frac{1}{4}+\frac{1}{4}=0, \\
\left(\mathrm{IC}_{B}\right) & z-w=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}>0, \\
\left(\mathrm{IC}_{L}\right) & -x+z=-\frac{1}{4}+\frac{1}{2}=\frac{1}{4}>0, \\
\left(\mathrm{IC}_{R}\right) & y-w=\frac{1}{4}-0=\frac{1}{4}>0,
\end{array}
$$

2. Identify the binding non-negativity constraints:

$$
\text { (NN) } \quad x>0, y>0, z>0, w=0 \text {. }
$$

3. Write down the system of binding constraints:

$$
\begin{aligned}
\left(\mathrm{IC}_{T}^{*}\right) & -x+y=0 \\
\left(\mathrm{NN}_{(B, R)}^{*}\right) & w=0 \\
(\text { Prob }) & x+y+z+w=1 .
\end{aligned}
$$

4. Check whether α is the unique solution to the system of binding constraints.

This system has infinitely many solutions, hence $\alpha \notin \operatorname{extreme}\left(C E\left(\Gamma_{1}\right)\right)$.

We establish the following proposition:
Proposition 1. Let Γ be a strategic-form game, $\alpha \in C E(\Gamma)$, and let $A \alpha=b$ be the matrix form of the system of constraints binding at α. The following are equivalent:
(I) $\alpha \in \operatorname{extreme}(C E(\Gamma))$,
(II) α is the unique solution to the system of constraints binding at α,
(III) $\operatorname{rank} A=\#$ action profiles in $\Gamma \equiv k$.

Proof. We present the proof in a series of lemmas:
Lemma 1. $(I I) \Rightarrow$ (III).
Proof. Suppose that $\operatorname{rank} A<k$, then the columns of A are linearly dependent, i.e. there exists a non-trivial linear combination

$$
\lambda_{1} A_{1}+\cdots+\lambda_{k} A_{k}=0
$$

Let $\lambda \equiv\left(\lambda_{1}, \ldots, \lambda_{k}\right)^{T}$, and $\alpha^{\prime} \equiv \alpha+\lambda$, then $A \alpha^{\prime}=A(\alpha+\lambda)=A \alpha+A \lambda=b+0=b$, i.e. α^{\prime} is also a solution to the system of constraints binding at α.

Lemma 2. $(I I I) \Rightarrow(I I)$.
Proof. Suppose that there are at least two distinct solutions to the system of binding constraints, i.e. there is α^{\prime} such that $A \alpha=A \alpha^{\prime}=b$ with $\alpha \neq \alpha^{\prime}$. Define $\lambda \equiv \alpha-\alpha^{\prime} \neq$ 0 , we then have $A\left(\alpha-\alpha^{\prime}\right)=A \alpha-A \alpha^{\prime}=0$ and, hence the columns of A are linearly dependent and therefore $\operatorname{rank} A<k$.

Lemma 3. $(I I) \Rightarrow(I)$.
Proof. Suppose $\alpha \notin$ extreme $(C E(\Gamma))$, then there exist two distinct correlated equilibria, $\alpha^{\prime} \in C E(\Gamma)$ and $\alpha^{\prime \prime} \in C E(\Gamma)$, and some $\lambda \in(0,1)$ such that $\alpha=\lambda \alpha^{\prime}+(1-\lambda) \alpha^{\prime \prime}$. Let $I C^{*}(\alpha)$ and $N N^{*}(\alpha)$ be the incentive and non-negativity constraints binding at α. Since α^{\prime} and $\alpha^{\prime \prime}$ satisfy all the incentive and non-negativity constraints, we have ${ }^{1}$

[^0]\[

$$
\begin{aligned}
\left(\mathrm{IC}_{\left(a_{i}, \tilde{a}_{i}\right)}^{*}\right) & \sum_{a_{-i} \in A_{-i}} \alpha^{\prime}\left(a_{i}, a_{-i}\right)\left[u_{i}\left(a_{i}, a_{-i}\right)-u_{i}\left(\tilde{a}_{i}, a_{-i}\right)\right]=0 \quad \forall\left(a_{i}, \tilde{a}_{i}\right) \text { s.t. } \mathrm{IC}_{\left(a_{i}, \tilde{a_{-i}}\right)} \in I C^{*}(\alpha), \\
\left(\mathrm{NN}_{a}^{*}\right) & \alpha^{\prime}(a)=0 \quad \forall a \text { s.t. } \mathrm{NN}_{a} \in N N^{*}(\alpha), \\
(\text { Prob }) & \sum_{a \in A} \alpha^{\prime}(a)=1,
\end{aligned}
$$
\]

thus the system of constraints binding at α has more than one solution.
Lemma 4. $(I) \Rightarrow$ (III).
Proof. Suppose $\operatorname{rank} A<k$, then A has linearly dependent columns, i.e. there exists a non-trivial linear combination

$$
\lambda_{1} A_{1}+\cdots+\lambda_{k} A_{k}=0
$$

Let $\lambda \equiv\left(\lambda_{1}, \ldots, \lambda_{k}\right)^{T}$, and $\alpha^{\prime} \equiv \alpha+\epsilon \lambda$ and $\alpha^{\prime \prime} \equiv \alpha-\epsilon \lambda$ for some small $\epsilon>0$. Clearly, $A \alpha^{\prime}=A(\alpha+\epsilon \lambda)=A \alpha+\epsilon A \lambda=b+0=b$ and $A \alpha^{\prime \prime}=A(\alpha-\epsilon \lambda)=A \alpha-\epsilon A \lambda=b-0=b$, thus those incentive and non-negativity constraints that are binding at α are also binding at α^{\prime} and $\alpha^{\prime \prime}$. By continuity, those incentive and non-negativity constraints that are slack at α continue to be slack at α^{\prime} and $\alpha^{\prime \prime}$ (as long as ϵ is small enough), hence $\alpha^{\prime} \in C E(\Gamma)$ and $\alpha^{\prime \prime} \in C E(\Gamma)$, but we then have

$$
\alpha=\frac{1}{2}(\alpha+\epsilon \lambda)+\frac{1}{2}(\alpha-\epsilon \lambda)=\frac{1}{2} \alpha^{\prime}+\frac{1}{2} \alpha^{\prime \prime},
$$

hence $\alpha \notin \operatorname{extreme}(C E(\Gamma))$.

[^0]: ${ }^{1}$ The same is true for $\alpha^{\prime \prime}$.

