Game Theory, Spring 2024 Lecture # 12

Daniil Larionov

This version: May 29, 2024 Click here for the latest version

1 Extreme points of the set of correlated of equilibria

We have shown that for any strategic-form game $\Gamma = (\mathcal{I}, A, \{u_i\}_{i \in \mathcal{I}})$ the set of its correlated equilibria $CE(\Gamma)$ is convex and compact. Such sets can be characterized via their *extreme points*.

Definition 1 (Extreme point). A point α in a convex set C is an extreme point of C if there are no two distinct points $\alpha' \in C$ and $\alpha'' \in C$, and no $\lambda \in (0, 1)$ such that $\alpha = \lambda \alpha' + (1 - \lambda) \alpha''$. We write $\alpha \in \text{extreme}(C)$.

Suppose $\alpha \in CE(\Gamma)$, to check whether $\alpha \in \text{extreme}(CE(\Gamma))$, do the following:

- 1. Identify the binding incentive constraints (i.e. satisfied by α as equalities), and let IC^* denote the set of those incentive constraints.
- 2. Identify the binding non-negativity constraints (i.e. satisfied by α as equalities), and let NN^* denote the set of those non-negativity constraints.
- 3. Write down the following system of binding constraints:

$$(\operatorname{IC}_{(a_i,\tilde{a}_i)}^*) \qquad \sum_{a_{-i}\in A_{-i}} \alpha(a_i, a_{-i}) [u_i(a_i, a_{-i}) - u_i(\tilde{a}_i, a_{-i})] = 0 \qquad \forall (a_i, \tilde{a}_i) \text{ s.t. } \operatorname{IC}_{(a_i,\tilde{a}_i)} \in IC^*,$$

$$(\operatorname{NN}_a^*) \qquad \alpha(a) = 0 \qquad \forall a \text{ s.t. } \operatorname{NN}_a \in NN^*,$$

$$(1)$$

$$(\operatorname{Prob}) \qquad \sum_{a\in A} \alpha(a) = 1.$$

4. Check whether α is the unique solution to the system of binding constraints in (1). We will show below that $\alpha \in \text{extreme}(CE(\Gamma))$ if and only if α is the unique solution to System (1).

Example 1. Consider the strategic-form game Γ_1 from Lecture #11:

	L	R	
T	4,4	1, 5	
В	5, 1	0, 0	

Take $\alpha = (x, y, z, w) = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0\right) \in CE(\Gamma_1)$. Let's check whether $\alpha \in \text{extreme}(CE(\Gamma_1))$.

1. Identify the binding incentive constraints:

(IC_T)
$$-x + y = -\frac{1}{3} + \frac{1}{3} = 0,$$

(IC_B) $z - w = \frac{1}{3} - 0 = \frac{1}{3} > 0,$
(IC_L) $-x + z = -\frac{1}{3} + \frac{1}{3} = 0,$
(IC_R) $y - w = \frac{1}{3} - 0 = \frac{1}{3} > 0,$

2. Identify the binding non-negativity constraints:

(NN) x > 0, y > 0, z > 0, w = 0.

3. Write down the system of binding constraints:

(IC_T^{*})
$$-x + y = 0,$$

(IC_L^{*}) $-x + z = 0,$
(NN_(B,R)) $w = 0,$
(Prob) $x + y + z + w = 1.$

4. Check whether α is the unique solution to the system of binding constraints.

The unique solution to the system of binding constraints is $\alpha = (x, y, z, w) = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0)$, hence $\alpha \in \text{extreme}(CE(\Gamma_1))$.

Example 2. Consider the strategic-form game Γ_1 from Lecture #11:

	L	R	
T	4, 4	1, 5	
В	5, 1	0,0	

Take $\alpha = (x, y, z, w) = \left(\frac{1}{4}, \frac{1}{4}, \frac{1}{2}, 0\right) \in CE(\Gamma_1)$. Let's check whether $\alpha \in \text{extreme}\left(CE(\Gamma_1)\right)$.

1. Identify the binding incentive constraints:

(IC_T)
$$-x + y = -\frac{1}{4} + \frac{1}{4} = 0,$$

(IC_B) $z - w = \frac{1}{2} - \frac{1}{4} = \frac{1}{4} > 0,$
(IC_L) $-x + z = -\frac{1}{4} + \frac{1}{2} = \frac{1}{4} > 0,$
(IC_R) $y - w = \frac{1}{4} - 0 = \frac{1}{4} > 0,$

2. Identify the binding non-negativity constraints:

(NN) x > 0, y > 0, z > 0, w = 0.

3. Write down the system of binding constraints:

$$(IC_T^*) \qquad -x+y=0,$$
$$(NN_{(B,R)}^*) \qquad w=0,$$
$$(Prob) \qquad x+y+z+w=1.$$

4. Check whether α is the unique solution to the system of binding constraints. This system has infinitely many solutions, hence $\alpha \notin \text{extreme}(CE(\Gamma_1))$. We establish the following proposition:

Proposition 1. Let Γ be a strategic-form game, $\alpha \in CE(\Gamma)$, and let $A\alpha = b$ be the matrix form of the system of constraints binding at α . The following are equivalent:

(I) $\alpha \in \operatorname{extreme}(CE(\Gamma)),$

(II) α is the unique solution to the system of constraints binding at α ,

(III) rankA =#action profiles in $\Gamma \equiv k$.

Proof. We present the proof in a series of lemmas:

Lemma 1. $(II) \Rightarrow (III)$.

Proof. Suppose that rankA < k, then the columns of A are linearly dependent, i.e. there exists a non-trivial linear combination

$$\lambda_1 A_1 + \dots + \lambda_k A_k = 0.$$

Let $\lambda \equiv (\lambda_1, \dots, \lambda_k)^T$, and $\alpha' \equiv \alpha + \lambda$, then $A\alpha' = A(\alpha + \lambda) = A\alpha + A\lambda = b + 0 = b$, i.e. α' is also a solution to the system of constraints binding at α .

Lemma 2. (III) \Rightarrow (II).

Proof. Suppose that there are at least two distinct solutions to the system of binding constraints, i.e. there is α' such that $A\alpha = A\alpha' = b$ with $\alpha \neq \alpha'$. Define $\lambda \equiv \alpha - \alpha' \neq 0$, we then have $A(\alpha - \alpha') = A\alpha - A\alpha' = 0$ and, hence the columns of A are linearly dependent and therefore rankA < k.

Lemma 3. (II) \Rightarrow (I).

Proof. Suppose $\alpha \notin \text{extreme}(CE(\Gamma))$, then there exist two distinct correlated equilibria, $\alpha' \in CE(\Gamma)$ and $\alpha'' \in CE(\Gamma)$, and some $\lambda \in (0, 1)$ such that $\alpha = \lambda \alpha' + (1 - \lambda) \alpha''$. Let $IC^*(\alpha)$ and $NN^*(\alpha)$ be the incentive and non-negativity constraints binding at α . Since α' and α'' satisfy all the incentive and non-negativity constraints, we have¹

¹The same is true for α'' .

$$\begin{aligned} \left(\mathrm{IC}^*_{(a_i,\tilde{a}_i)} \right) & \sum_{a_{-i} \in A_{-i}} \alpha'(a_i, a_{-i}) \left[u_i(a_i, a_{-i}) - u_i(\tilde{a}_i, a_{-i}) \right] = 0 \qquad \forall (a_i, \tilde{a}_i) \text{ s.t. } \mathrm{IC}_{(a_i, \tilde{a}_{-i})} \in IC^*(\alpha), \\ \left(\mathrm{NN}^*_a \right) & \alpha'(a) = 0 \qquad \forall a \text{ s.t. } \mathrm{NN}_a \in NN^*(\alpha), \\ \left(\mathrm{Prob} \right) & \sum_{a \in A} \alpha'(a) = 1, \end{aligned}$$

thus the system of constraints binding at α has more than one solution.

Lemma 4. $(I) \Rightarrow (III)$.

Proof. Suppose rank A < k, then A has linearly dependent columns, i.e. there exists a non-trivial linear combination

$$\lambda_1 A_1 + \dots + \lambda_k A_k = 0.$$

Let $\lambda \equiv (\lambda_1, \ldots, \lambda_k)^T$, and $\alpha' \equiv \alpha + \epsilon \lambda$ and $\alpha'' \equiv \alpha - \epsilon \lambda$ for some small $\epsilon > 0$. Clearly, $A\alpha' = A(\alpha + \epsilon \lambda) = A\alpha + \epsilon A\lambda = b + 0 = b$ and $A\alpha'' = A(\alpha - \epsilon \lambda) = A\alpha - \epsilon A\lambda = b - 0 = b$, thus those incentive and non-negativity constraints that are binding at α are also binding at α' and α'' . By continuity, those incentive and non-negativity constraints that are slack at α continue to be slack at α' and α'' (as long as ϵ is small enough), hence $\alpha' \in CE(\Gamma)$ and $\alpha'' \in CE(\Gamma)$, but we then have

$$\alpha = \frac{1}{2} (\alpha + \epsilon \lambda) + \frac{1}{2} (\alpha - \epsilon \lambda) = \frac{1}{2} \alpha' + \frac{1}{2} \alpha'',$$

hence $\alpha \notin \text{extreme}(CE(\Gamma))$.

_			
Е			1
L			L
L	_	_	1